An Adaptation of Krylov Subspace Methods to Path Following Problems
نویسنده
چکیده
A procedure is outlined for adapting Krylov subspace methods to solving approximately the underdetermined linear systems that arise in path following (continuation, homotopy) methods. This procedure, in addition to preserving the usual desirable features of Krylov subspace methods, has the advantages of satisfying orthogonality constraints exactly and of not introducing ill-conditioning through poor scaling.
منابع مشابه
Timely Communication an Adaptation of Krylov Subspace Methods to Path following Problems∗
A procedure is outlined for adapting Krylov subspace methods to solving approximately the underdetermined linear systems that arise in path following (continuation, homotopy) methods. This procedure, in addition to preserving the usual desirable features of Krylov subspace methods, has the advantages of satisfying orthogonality constraints exactly and of not introducing ill-conditioning through...
متن کاملNovel interpretation of contour integral spectral projection methods for solving generalized eigenvalue problems
For generalized eigenvalue problems, we consider computing all eigenvalues located in a certain region and their corresponding eigenvectors. Recently, contour integral spectral projection methods have been proposed for such problems. In this study, from an analysis of the relationship between the contour integral spectral projection and the Krylov subspace, we provide a novel interpretation of ...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملPreconditioned Solution of State Gradient Constrained Elliptic Optimal Control Problems
Elliptic optimal control problems with pointwise state gradient constraints are considered. A quadratic penalty approach is employed together with a semismooth Newton iteration. Three different preconditioners are proposed and the ensuing spectral properties of the preconditioned linear Newton saddle-point systems are analyzed in dependence on the penalty parameter. A new bound for the smallest...
متن کاملSolving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 21 شماره
صفحات -
تاریخ انتشار 1999